G1/S control of anchorage-independent growth in the fibroblast cell cycle
نویسندگان
چکیده
We have developed methodology to identify the block to anchorage-independent growth and position it within the fibroblast cell cycle. Results with NRK fibroblasts show that mitogen stimulation of the G0/G1 transition and G1-associated increases in cell size are minimally affected by loss of cell anchorage. In contrast, the induction of G1/S cell cycle genes and DNA synthesis is markedly inhibited when anchorage is blocked. Moreover, we demonstrate that the anchorage-dependent transition maps to late G1 and shortly before activation of the G1/S p34cdc2-like kinase. The G1/S block was also detectable in NIH-3T3 cells. Our results: (a) distinguish control of cell cycle progression by growth factors and anchorage; (b) indicate that anchorage mediates G1/S control in fibroblasts; and (c) identify a physiologic circumstance in which the phenotype of mammalian cell cycle arrest would closely resemble Saccharomyces cerevisiae START. The close correlation between anchorage independence in vitro and tumorigenicity in vivo emphasizes the key regulatory role for G1/S control in mammalian cells.
منابع مشابه
A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically
We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using G0-synchronized NRK and NIH-3T3 cells, we showed that anchorage-independent growth is regulated by an attachment-dependent transition at G1/S that resembles the START control point in the cell cycle of Saccharomyces cerevisiae. In the studies reported here, we have synchr...
متن کاملOncogenic stimulation recruits cyclin-dependent kinase in the cell cycle start in rat fibroblast.
The rat fibroblast NRK cells are transformed reversibly by a combination of growth factors. When stimulated with serum, NRK cells rely on cyclin-dependent kinase 4 (Cdk4) for their S phase entry. However, when stimulated with serum containing oncogenic growth factors, they come to rely on either Cdk4 or Cdk6, and their S phase entry cannot be blocked unless both Cdk4 and Cdk6 are immunodepleted...
متن کاملCell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells.
Galectin-3 is a member of a growing family of animal beta-galactoside-binding proteins shown to be involved in cell growth, differentiation, apoptosis resistance, and tumor progression. In the present study, we investigated whether galectin-3 can protect against apoptosis induced by the loss of cell anchorage (anoikis). Because studies suggest that cellular sensitivity to anoikis is associated ...
متن کاملMuscarinic acetylcholine receptor down-regulation limits the extent of inhibition of cell cycle progression in Chinese hamster ovary cells.
Cellular desensitization is believed to be important for growth control but direct evidence is lacking. In the current study we compared effects of wild-type and down-regulation-resistant mutant m3 muscarinic receptors on Chinese hamster ovary (CHO-K1) cell desensitization, proliferation, and transformation. We found that down-regulation of m3 muscarinic acetylcholine receptors was the principa...
متن کاملFibronectin Assembly in the Crypts of Cytokinesis-Blocked Multilobular Cells Promotes Anchorage-Independent Growth
Anchorage-independent growth is a characteristic feature of cancer cells. However, it is unclear whether it represents a cause or a consequence of tumorigenesis. For normal cells, integrin-mediated adhesion is required for completion of the G1 and cytokinesis stages of the cell cycle. This study identified a mechanism that can drive anchorage-independent growth if the G1 checkpoint is suppresse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 115 شماره
صفحات -
تاریخ انتشار 1991